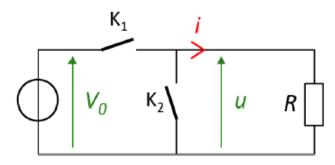
CPGE – PT Mr Bernard

TD hacheur série frontale


A/ Hacheur série sur une lampe frontale

[Difficulté 1/3]

On s'intéresse ici à l'autonomie d'une lampe frontale disposant de plusieurs degrés d'éclairage (économique, moyen et fort), alimentée par une batterie Li-ion. La LED servant à l'éclairage est alimentée de façon intermittente par l'intermédiaire d'un hacheur série. La fréquence de découpage est de 310 Hz (\pm 10 Hz), très grande

devant la fréquence d'acquisition des yeux (25 images / s, soit 25 Hz), ce qui donne une impression d'éclairage constant, moyenné (filtre passe-bas) alors qu'en pratique la LED ne cesse de s'allumer et de s'éteindre. Le modèle de la LED étant hors programme, nous l'assimilerons ici à une charge résistive lorsqu'elle est traversée par un courant.

On considèrera un facteur de conversion de 0,01 W/lumen. La puissance électrique utile à la LED sera notée P_{lum} (conversion supposée sans perte), et le rendement de conversion $\eta_L = \frac{p_{\mathrm{lum}}}{\langle u \ i \rangle} = 90\%$.

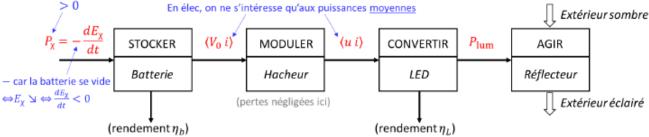
On notera également :

- R = 5 Ω la résistance équivalente de la LED
- η_b = 90% le rendement de la batterie
- C_b = 1250 mA.h la capacité de la batterie
- V₀ = 5 V (tension USB) la tension batterie
- E_v l'énergie chimique contenue dans la batterie

La séquence de conduction du hacheur série est :

- Phase A: 0 ≤ t < αT : K₁ passant, K₂ bloqué</p>
- Phase B: $\alpha T \le t < T$: K₁ bloqué, K₂ passant

Q1 – Compléter les chronogrammes de u(t), i(t) et $u(t) \times i(t)$.

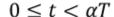

Q2 – En déduire l'expression du rapport cyclique lpha permettant d'obtenir une puissance lumineuse $P_{
m lum}$ imposée. Entre autres, donner l'expression de la puissance lumineuse maximale $P_{
m lum\,MAX}$ que peut délivrer cette lampe. Faire l'application numérique de lpha pour $P_{
m lum}$ correspondant à 200 lumen, et l'application numérique de $P_{
m lum\,MAX}$.

Q3 – Donner alors l'expression du temps de décharge Δt de la batterie en fonction de la puissance lumineuse P_{lum} imposée (on part pour cela d'une batterie pleine).

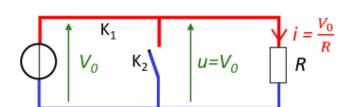
Faire l'application numérique pour P_{lum} correspondant à 200 lumen.

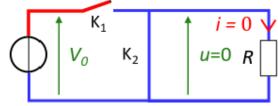
B/ Aide

Q2 et 3 – Au brouillon, je vous conseille de tracer la chaîne de puissance, et reporter les notations de l'énoncé



TD hacheur série frontale page 1/2




TD hacheur série frontale

Q1 - On peut, pour s'aider, tracer le circuit équivalent dans les phases A et B :

$$\alpha T \leq t < T$$

Rmq: on a toujours, aux bornes de la résistance, u = Ri donc i = u/R, qui vaut donc 0 dans la seconde phase.

Q2 – La puissance moyenne consommée par la LED est donc $\langle u|i \rangle = \frac{1}{T} \left[\alpha T \frac{V_0^2}{R} \right] = \alpha \frac{V_0^2}{R}$ qui vaut par ailleurs $\frac{P_{\text{lum}}}{\eta_L}$.

<u>Rmq</u>: on remarque que $\langle V_0 | i \rangle = V_0 \langle i \rangle$ (car V_0 tension constante) = $V_0 \times \frac{\alpha V_0}{R} = \langle u | i \rangle$, c'est-à-dire que le rendement du hacheur est 1 (même puissance en amont et aval).

On en déduit que $\alpha \frac{V_0^2}{R} = \frac{p_{\mathrm{lum}}}{\eta_L} \Rightarrow \alpha = \frac{R}{\eta_L} \frac{p_{\mathrm{lum}}}{v_0^2}$. Appli num : pour 200 lumen, $P_{\mathrm{lum}} = 2$ W, donc $\alpha = \frac{5 \times 2}{5 \times 5 \times 0.9} \approx 0.45$ D'après la loi précédente, $P_{\mathrm{lum}} \propto \alpha$ (symbole « proportionnel à »), donc maximale pour $\alpha = 1$. On a alors : $P_{\mathrm{lum MAX}} = \frac{\eta_L V_0^2}{R} = \frac{0.9 \times 5 \times 5}{5} = 4.5$ W soit 450 lumen.

Q3 – Le rendement global de la chaîne de puissance est,
$$\eta_{\text{tot}} = \eta_b \eta_L = \left| \frac{\text{Puiss moy élec sortie batterie}}{\text{Puiss chimique batterie}} \right| = \frac{P_{\text{lum}}}{\left| \frac{dE_\chi}{dt} \right|}$$

Or à puissance consommée constante, $\left|\frac{dE_{\chi}}{dt}\right| = \left|\frac{E_{\text{finale}} - E_{\text{initiale}}}{\Delta t}\right| = \frac{C_b V_0}{\Delta t}$. (énergie dans une capa = $C \times U$)

 $\underline{\text{Rmq}}$: on aurait aussi pu travailler avec $-\frac{dE_{\chi}}{dt}$ (positif car la batterie se vide), $=\frac{E_{\text{initiale}}-E_{\text{finale}}}{\Delta t}=\frac{C_bV_0-0}{\Delta t}$, idem.

Ainsi,
$$\eta_b \eta_L \frac{c_b v_o}{\Delta t} = P_{\mathrm{lum}} \; \mathrm{d'où} \, \Delta t = \frac{\eta_b \eta_L}{P_{\mathrm{lum}}} \, \mathcal{C}_b V_0.$$

Appli num : il faut d'abord convertir $C_b = 1250$ mA.h = 1, 250 A.h = 1,25 × 3600 = 4500 A.s = 4500 C (Coulomb). On obtient une autonomie de $\Delta t = \frac{0.9 \times 0.9}{2} 4500 \times 5 \approx 2 \times 4500 = 9000 \, s \approx 2 \text{h} 30$.

TD hacheur série frontale page 2/2