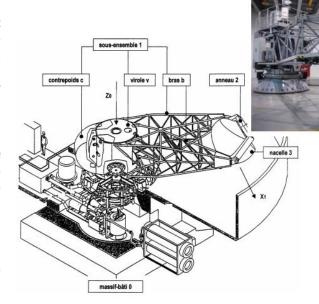
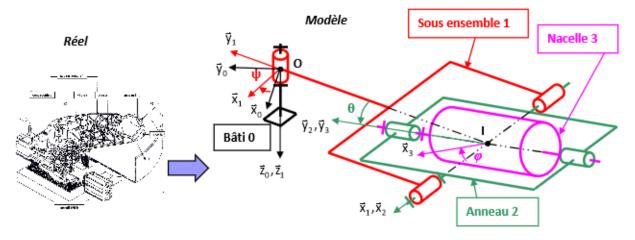
CPGE – PT Mr Pernot


TD - Cinétique

Centrifugeuse humaine

On s'intéresse à une centrifugeuse humaine dont on donne une description structurelle ainsi que la modélisation cinématique. Le système étudié est constitué de 4 éléments principaux :


- un massif-bâti en béton 0 sur lequel est rigidement ancré un axe assurant le guidage en rotation du sous ensemble 1 autour d'un axe vertical,
- un sous ensemble 1 en rotation autour de l'axe vertical qui est composé d'un contrepoids c, d'une virole v et d'un bras en treillis tubulaire b,
- un anneau 2, interposé entre la nacelle et le bras, autorisant les rotations autour des 2 axes orthogonaux (roulis et tangage),
- une nacelle instrumentée 3 équipée du siège pour le pilote.

Aux 4 éléments précédents s'ajoutent des équipements complémentaires comme :

- un générateur de puissance hydraulique,
- un réducteur pouvant transmettre une puissance de l'ordre de 1MW pour le mouvement de rotation du sous ensemble 1 par rapport à 0,
- une motorisation embarquée pour les mouvements de rotation de roulis et de tangage,
- · un système d'asservissement pour chaque actionneur.

Cette conception permet de lier de façon univoque, les profils de position (ou de vitesse relative) engendrés au niveau de chaque liaison à l'évolution temporelle des 3 composantes d'accélération que subit le pilote. Ainsi les consignes de position ou de vitesse à appliquer aux liaisons sont directement déduites de l'accélération à reproduire. La vitesse de rotation du bras détermine l'intensité de l'accélération imposée au pilote et l'orientation de la nacelle en roulis et tangage fixe la direction de l'accélération imposée au pilote.

Modélisation cinématique et paramétrage :

Sur le modèle on considère que :

TD Cinétique page 1/2

TD - Cinétique

Données massiques :

$$\text{Matrice d'inertie } \vec{l}_{G_1}(1) = \begin{bmatrix} A_1 & -F_1 & -E_1 \\ -F_1 & B_1 & -D_1 \\ -E_1 & -D_1 & C_1 \end{bmatrix}_{\left(G_1, \vec{X}_1, \vec{y}_1, \vec{Z}_1\right)}$$

Le plan $(0, \vec{y}_1, \vec{z}_1)$ est un plan de symétrie pour le sous ensemble 1.

Matrice d'inertie
$$i_1(2) = \begin{bmatrix} A_2 & -F_2 & -E_2 \\ -F_2 & B_2 & -D_2 \\ -E_2 & -D_2 & C_2 \end{bmatrix}_{(I,\vec{x}_2,\vec{y}_2,\vec{z}_2)}$$

Les plans (I,\vec{x}_2,\vec{y}_2) et (I,\vec{y}_2,\vec{z}_2) sont des plans de symétrie pour le solide 2.

Nacelle et pilote (3): Masse m₃, le centre de gravité reste confondu avec le point I

Matrice d'inertie
$$\vec{l}_1(3) = \begin{bmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{bmatrix}_{(I,\vec{X}_3,\vec{Y}_2,\vec{Z}_3)} = \begin{bmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{bmatrix}_{(I,\vec{X}_2,\vec{Y}_2,\vec{Z}_2)}$$

- Q.1. En tenant compte des données du problème, définir la forme simplifiée de la matrice d'inertie du sous ensemble 1 en G₁ dans la base 1.
- Q.2. Déterminer le torseur cinétique de 1/0 au point O du sous ensemble 1 dans son mouvement par rapport à
 0.
- Q.3. En tenant compte des données du problème, définir la forme simplifiée de la matrice d'inertie de l'anneau 2 en I dans la base 2.
- Q.4. Déterminer le torseur cinétique de 2/0 au point I du solide 2 dans son mouvement par rapport à 0.
- Q.5. Déterminer le torseur cinétique de 3/0 au point I du solide 3 dans son mouvement par rapport à 0.
- Q.6. En déduire le torseur cinétique de l'ensemble E₁=2+3 au point I dans son mouvement par rapport à 0.
- Q.7. Déterminer le torseur dynamique de 1/0 au point O du sous ensemble 1 dans son mouvement par rapport au repère 0.
- Q.8. Proposer sous forme d'organigramme les différentes étapes de calcul afin de déterminer le moment dynamique au point O $\overrightarrow{\delta_{0,E,/0}}$ de l'ensemble E_2 =1+2+3 dans son mouvement par rapport à 0.

TD Cinétique page 2/2